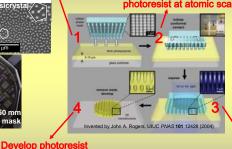

## Proximity-field nanoPatterning (PnP)

K. H. A. Bogart (1126), I. El-kady (1725), R. K. Grubbs (2452), K. Rahimian (1716), A. R. Ellis (1727), A. M. Sanchez (1717), K. Westlake (1727) and F. B. McCormick (1727) J. A. Rogers, D. J.-L. Shir (UIUC) and E. L. Dirk, A. Falase (UNM)


## **FABRICATION**

Silicone rubber phase mask patterned in x, y, z





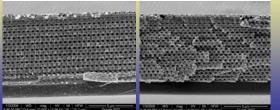
Conformal contact to ist at atomic scale





### **Expose photoresist** $\lambda = 365 \text{ nm}$

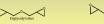
## PnP LITHOGRAPHY


- 3D light intensity pattern generated via Abbe diffraction and Talbot imaging principles
- Generate 3D nanometer-scale structures with simple optic and a single lithography cycle
- 3D structures up to 50 µµ thick, feature dimensions 0.5 to 1500 nm
- Fabrication in commercial cleanroom –MESA μFab with scaling to 150 mm
- 1-photon and 2-photon modes
- Engineered design of resultant structures

# **Atomic Layer Deposition**

- Dielectrics: Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, SiO<sub>2</sub>
- · Metals: Pt, W
- Graded temperature deposition (patent) · no resist deformation
- Increases structural stability
- · Modifies surface composition and chemistry

Face-centered cubic PnP structure by 2-photon exposure Pt-coated by ALD, optical measurements ongoing

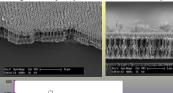

Potential photonic lattice



## CHEMICAL MODIFICATION

#### Control resist shrinkage

- · shrinkage due to epoxy reactions, contracture
- replace resist solvent with reactive solids






Sensitize Photoresist to ~530 nm for 2-photon mode (Z-Beamlet)

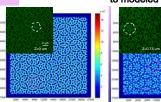
- Rose Bengal (bis(triethylammonium salt))
- UVAcure 1600 (photoacid generator)
- 532 nm, 3.5 W

#### Cubic geometry exposed at 532 nm, 1 photon mode



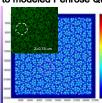
Uvacure 1600 (PAG)

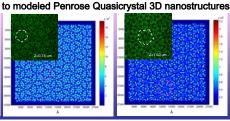
## **APPLICATIONS**

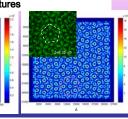

## MODELING AND SIMULATION

## Simulation and Modeling Methods

Examples of Various PnP 3D Nanostructure Geometries

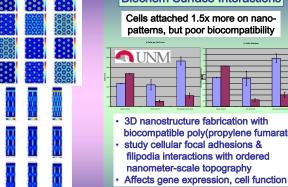

- Forward model inputs mask parameters, calculates 3D light intensity pattern
- Reverse model much more complex: requires iterative optimization
- · desired structure design converted to black/white image
- · input estimated set of period, diameter, and height parameters for phase mask
- calculate light intensity interference pattern, filter to reveal expected resist burn image
- · compare with desired structure, use integrated optimizer to improve mask parameters
- · cvcle again
- Accurate and flexible model allows fabrication of phase mask and 3D nanostructures based on design engineering, not semi-random assembly


# Comparison of confocal images of exposed resist (inset) at different depths into the structure

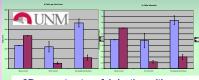



Penrose Quasicrystal

3D resist structure






The simulation engine is a high performance, OpenMP parallelized FDTD simulator optimized to run on shared memory netric multiprocessor (SMP) systems

## Horizontal (x, y) and Vertical (x, z) Modeled 3D Nanostructures for Hexagonal Geometry



# **Biochem Surface Interactions**



- biocompatible poly(propylene fumarate)

## **Photonic Crystals**



- 3D nanostructure with user-defined, periodic & quasicrystal geometries
- Fabricated in single lithography cycle with simple optic
- No repeated cycles of film deposition/litho/etching
- Fast, scalable, large-area. low-cost

Controllable geometries, variable surface chemistries, high surface: volume ratios suggest: photonics, sensors, storage, catalysis, filtration







